
Kuncheng Feng

CSC 466

What’s new?

Ship placement methods now give feedback as to what went wrong.

Quick Interactive Demo

[1]> (load "Main.l")

;; Loading file Main.l ...

;; Loading file Board.l ...

;; Loaded file Board.l

;; Loading file Row.l ...

;; Loaded file Row.l

;; Loading file Cell.l ...

;; Loaded file Cell.l

;; Loading file Ship.l ...

;; Loaded file Ship.l

;; Loaded file Main.l

T

[2]> (setf board (newBoard 10 10))

#<BOARD #x1A9CF995>

[3]> (display board)

A B C D E F G H I J

+---+---+---+---+---+---+---+---+---+---+

0 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

1 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

2 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

3 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

4 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

5 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

6 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

7 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

8 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

9 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

NIL

[4]> (setf ship (newShip 'plane))

Ship type not supported.

NIL

[5]> (setf ship (newShip 'carrier))

#<SHIP #x1A9CA95D>

[6]> (placeShip 0 0 3 0 ship board)

Error: Incorrect size.

NIL

[7]> (placeShip 0 10 4 10 ship board)

Error: Position 1 out of bound.

NIL

[8]> (placeShip 9 9 13 9 ship board)

Error: Position 2 out of bound.

NIL

[9]> (placeShip 0 0 4 4 ship board)

Error: Ship needs to be vertical or horizontal.

NIL

[10]> (placeShip 0 0 0 4 ship board)

T

[11]> (display board)

A B C D E F G H I J

+---+---+---+---+---+---+---+---+---+---+

0 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

1 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

2 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

3 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

4 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

5 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

6 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

7 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

8 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

9 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

NIL

[12]> (placeShip 0 3 4 3 ship board)

Error: Cells already occupied.

NIL

[13]> (display board)

A B C D E F G H I J

+---+---+---+---+---+---+---+---+---+---+

0 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

1 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

2 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

3 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

4 | 5 | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

5 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

6 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

7 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

8 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

9 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

NIL

[14]>

Relative Code:

; Checking for valid ship placement

; The ship position should be checked valid before placement

(defmethod checkValid(x1 y1 x2 y2 shipType (b board) &aux result)

(setf result t)

(cond

((not (checkType shipType))

(format t "Error: Incorrect ship type.~%")

(setf result nil)

)

((not (checkSize shipType x1 y1 x2 y2))

(format t "Error: Incorrect size.~%")

(setf result nil)

)

((not (checkBorder x1 y1 b))

(format t "Error: Position 1 out of bound.~%")

(setf result nil)

)

((not (checkBorder x2 y2 b))

(format t "Error: Position 2 out of bound.~%")

(setf result nil)

)

((not (checkDiagonal x1 y1 x2 y2))

(format t "Error: Ship needs to be either vertical

or horizontal.~%")

(setf result nil)

)

((not (checkResidents x1 y1 x2 y2 b))

(format t "Error: Cells already occupied.~%")

(setf result nil)

)

)

result

)

(defmethod checkType(shipType)

(not (equal (member shipType shipTypes) nil))

)

; Note: (0 1 2 3 4) would count as size 5

(defmethod checkSize(type x1 y1 x2 y2 &aux shipSize horSize verSize)

(setf shipSize (get 'shipSize type))

(setf horSize (+ (abs (- x1 x2)) 1))

(setf verSize (+ (abs (- y1 y2)) 1))

(or

(= shipSize horSize)

(= shipSize verSize)

)

)

; (X Y)

; Y Y

; X |0 0|0 1|

; X |1 0|1 1|

(defmethod checkBorder(x y (b board))

(and

(>= x 0)

(< x (length (board-rows b)))

(>= y 0)

(< y (board-width b))

)

)

; A ship cannot be placed diagonally

(defmethod checkDiagonal(x1 y1 x2 y2)

(or

(and

(= x1 x2)

(not (= y1 y2))

)

(and

(not (= x1 x2))

(= y1 y2)

)

)

)

; All the cells that the ship is going to occupy have to be empty

; The methods used here are defined below.

(defmethod checkResidents(x1 y1 x2 y2 (b board) &aux cells result)

(if (= x1 x2)

(setf cells (sameXCells x1 y1 y2 b))

(setf cells (sameYCells x1 x2 y1 b))

)

(setf result t)

(loop for cell in cells do

(setf result (and result (checkCell cell)))

)

result

)

; Check if the cell is empty

(defmethod checkCell((c cell))

(equal (cell-resident c) nil)

)

;

; Placing ships

(defmethod getCell(x y (b board))

(nth x (row-cells (nth y (board-rows b))))

)

; Note, ship is placed with this function

; Can't specify ship object because it is loaded after this

; (carrier battleship cruiser submarine destroyer)

(defmethod placeShip(x1 y1 x2 y2 (s ship) (b board) &aux cells

shipType)

(setf shipType (ship-type s))

(cond

((checkValid x1 y1 x2 y2 shipType b)

(if (= x1 x2)

(setf cells (sameXCells x1 y1 y2 b))

(setf cells (sameYCells x1 x2 y1 b))

)

(setResidents cells shipType)

(setShipCells s cells)

t ;; Return true to represent success

)

(t

nil ;; Return false to represent failure

)

)

)

; Mark the resident at the given cells

(defmethod setResidents(cells shipType &aux shipNum)

(setf shipNum (get 'shipRep shipType))

(dotimes (n (length cells))

(setCellResident (nth n cells) shipNum)

)

)

; Return all the cells between two Ys.

(defmethod sameXCells(x y1 y2 (b board))

(cond

((= y1 y2)

(list (getCell x y1 b))

)

((< y1 y2) ; Up to down

(cons (getCell x y1 b) (sameXCells x (+ y1 1) y2 b))

)

(t ; Down to up

(cons (getCell x y2 b) (sameXCells x y1 (+ y2 1) b))

)

)

)

; Return all the cells between two Xs.

(defmethod sameYCells(x1 x2 y (b board))

(cond

((= x1 x2)

(list (getCell x1 y b))

)

((< x1 x2) ; Left to right

(cons (getCell x1 y b) (sameYCells (+ x1 1) x2 y b))

)

(t ; Right to left

(cons (getCell x2 y b) (sameYCells x1 (+ x2 1) y b))

)

)

)

;
